Radio Broadcasting Essay

This article is about science and technology. For broadcasting, see Radio broadcasting. For other uses, see Radio (disambiguation).

Radio is the technology of using radio waves to carry information, such as sound, by systematically modulating properties of electromagnetic energy waves transmitted through space, such as their amplitude, frequency, phase, or pulse width.[n 1] When radio waves strike an electrical conductor, the oscillating fields induce an alternating current in the conductor. The information in the waves can be extracted and transformed back into its original form.

Radio systems need a transmitter to modulate (change) some property of the energy produced to impress a signal on it, for example using amplitude modulation or angle modulation (which can be frequency modulation or phase modulation). Radio systems also need an antenna to convert electric currents into radio waves, and radio waves into an electric current. An antenna can be used for both transmitting and receiving. The electrical resonance of tuned circuits in radios allow individual frequencies to be selected. The electromagnetic wave is intercepted by a tuned receiving antenna. A radio receiver receives its input from an antenna and converts it into a form that is usable for the consumer, such as sound, pictures, digital data, measurement values, navigational positions, etc.[2] Radio frequencies occupy the range from a 3 kHz to 300 GHz, although commercially important uses of radio use only a small part of this spectrum.[3]

A radio communication system requires a transmitter and a receiver, each having an antenna and appropriate terminal equipment such as a microphone at the transmitter and a loudspeaker at the receiver in the case of a voice-communication system.[4]

Etymology[edit]

The term "radio" is derived from the Latin word "radius", meaning "spoke of a wheel, beam of light, ray". It was first applied to communications in 1881 when, at the suggestion of French scientist Ernest Mercadier, Alexander Graham Bell adopted "radiophone" (meaning "radiated sound") as an alternate name for his photophone optical transmission system.[5] However, this invention would not be widely adopted.

Following Heinrich Hertz's establishment of the existence of electromagnetic radiation in the late 1880s, a variety of terms were initially used for the phenomenon, with early descriptions of the radiation itself including "Hertzian waves", "electric waves", and "ether waves", while phrases describing its use in communications included "spark telegraphy", "space telegraphy", "aerography" and, eventually and most commonly, "wireless telegraphy". However, "wireless" included a broad variety of related electronic technologies, including electrostatic induction, electromagnetic induction and aquatic and earth conduction, so there was a need for a more precise term referring exclusively to electromagnetic radiation.

The first use of radio- in conjunction with electromagnetic radiation appears to have been by French physicist Édouard Branly, who in 1890 developed a version of a coherer receiver he called a radio-conducteur.[6] The radio- prefix was later used to form additional descriptive compound and hyphenated words, especially in Europe. For example, in early 1898 the British publication The Practical Engineer included a reference to "the radiotelegraph" and "radiotelegraphy",[7] while the French text of both the 1903 and 1906 Berlin Radiotelegraphic Conventions includes the phrases radiotélégraphique and radiotélégrammes.

The use of "radio" as a standalone word dates back to at least December 30, 1904, when instructions issued by the British Post Office for transmitting telegrams specified that "The word 'Radio'... is sent in the Service Instructions".[8] This practice was universally adopted, and the word "radio" introduced internationally, by the 1906 Berlin Radiotelegraphic Convention, which included a Service Regulation specifying that "Radiotelegrams shall show in the preamble that the service is 'Radio'".

The switch to "radio" in place of "wireless" took place slowly and unevenly in the English-speaking world. Lee de Forest helped popularize the new word in the United States—in early 1907 he founded the DeForest Radio Telephone Company, and his letter in the June 22, 1907 Electrical World about the need for legal restrictions warned that "Radio chaos will certainly be the result until such stringent regulation is enforced".[9] The United States Navy would also play a role. Although its translation of the 1906 Berlin Convention used the terms "wireless telegraph" and "wireless telegram", by 1912 it began to promote the use of "radio" instead. The term started to become preferred by the general public in the 1920s with the introduction of broadcasting. ("Broadcasting" is based upon an agricultural term meaning roughly "scattering seeds widely".) British Commonwealth countries continued to commonly use the term "wireless" until the mid-20th century, though the magazine of the British Broadcasting Corporation in the UK has been called Radio Times since its founding in the early 1920s.

In recent years the more general term "wireless" has gained renewed popularity, even for devices using electromagnetic radiation, through the rapid growth of short-range computer networking, e.g., Wireless Local Area Network (WLAN), Wi-Fi, and Bluetooth, as well as mobile telephony, e.g., GSM and UMTS cell phones. Today, the term "radio" specifies the transceiver device or chip, whereas "wireless" refers to the lack of physical connections; thus equipment employs embedded radio transceivers, but operates as wireless devices over wireless sensor networks.

Processes[edit]

Radio systems used for communication have the following elements. With more than 100 years of development, each process is implemented by a wide range of methods, specialised for different communications purposes.

Transmitter and modulation[edit]

Main article: Radio transmitter

See also: Radio transmitter design

Each system contains a transmitter, This consists of a source of electrical energy, producing alternating current of a desired frequency of oscillation. The transmitter contains a system to modulate (change) some property of the energy produced to impress a signal on it. This modulation might be as simple as turning the energy on and off, or altering more subtle properties such as amplitude, frequency, phase, or combinations of these properties. The transmitter sends the modulated electrical energy to a tuned resonantantenna; this structure converts the rapidly changing alternating current into an electromagnetic wave that can move through free space (sometimes with a particular polarization).

Amplitude modulation of a carrier wave works by varying the strength of the transmitted signal in proportion to the information being sent. For example, changes in the signal strength can be used to reflect the sounds to be reproduced by a speaker, or to specify the light intensity of television pixels. It was the method used for the first audio radio transmissions, and remains in use today. "AM" is often used to refer to the medium wave broadcast band (see AM radio), but it is used in various radiotelephone services such as the Citizens Band, amateur radio and especially in aviation, due to its ability to be received under very weak signal conditions and its immunity to capture effect, allowing more than one signal to be heard simultaneously.

Frequency modulation varies the frequency of the carrier. The instantaneous frequency of the carrier is directly proportional to the instantaneous value of the input signal. FM has the "capture effect" whereby a receiver only receives the strongest signal, even when others are present. Digital data can be sent by shifting the carrier's frequency among a set of discrete values, a technique known as frequency-shift keying. FM is commonly used at Very high frequency (VHF) radio frequencies for high-fidelitybroadcasts of music and speech (see FM broadcasting). Analog TV sound is also broadcast using FM.

Angle modulation alters the instantaneous phase of the carrier wave to transmit a signal. It may be either FM or phase modulation (PM).

Antenna[edit]

Main article: Antenna (radio)

An antenna (or aerial) is an electrical device which converts electric currents into radio waves, and vice versa. It is usually used with a radio transmitter or radio receiver. In transmission, a radio transmitter supplies an electric current oscillating at radio frequency (i.e. high frequency AC) to the antenna's terminals, and the antenna radiates the energy from the current as electromagnetic waves (radio waves). In reception, an antenna intercepts some of the power of an electromagnetic wave in order to produce a tiny voltage at its terminals, that is applied to a receiver to be amplified. Some antennas can be used for both transmitting and receiving, even simultaneously, depending on the connected equipment.

Propagation[edit]

Main article: Radio propagation

Once generated, electromagnetic waves travel through space either directly, or have their path altered by reflection, refraction or diffraction. The intensity of the waves diminishes due to geometric dispersion (the inverse-square law); some energy may also be absorbed by the intervening medium in some cases. Noise will generally alter the desired signal; this electromagnetic interference comes from natural sources, as well as from artificial sources such as other transmitters and accidental radiators. Noise is also produced at every step due to the inherent properties of the devices used. If the magnitude of the noise is large enough, the desired signal will no longer be discernible; the signal-to-noise ratio is the fundamental limit to the range of radio communications.

Resonance[edit]

Main article: Electrical resonance

See also: LC circuit

Electrical resonance of tuned circuits in radios allow individual stations to be selected. A resonant circuit will respond strongly to a particular frequency, and much less so to differing frequencies. This allows the radio receiver to discriminate between multiple signals differing in frequency.

Receiver and demodulation[edit]

Main article: Radio receiver

See also: Radio receiver design, Crystal radio, and Communications receiver

The electromagnetic wave is intercepted by a tuned receiving antenna; this structure captures some of the energy of the wave and returns it to the form of oscillating electrical currents. At the receiver, these currents are demodulated, which is conversion to a usable signal form by a detector sub-system. The receiver is "tuned" to respond preferentially to the desired signals, and reject undesired signals.

Early radio systems relied entirely on the energy collected by an antenna to produce signals for the operator. Radio became more useful after the invention of electronic devices such as the vacuum tube and later the transistor, which made it possible to amplify weak signals. Today radio systems are used for applications from walkie-talkie children's toys to the control of space vehicles, as well as for broadcasting, and many other applications.

A radio receiver receives its input from an antenna, uses electronic filters to separate a wanted radio signal from all other signals picked up by this antenna, amplifies it to a level suitable for further processing, and finally converts through demodulation and decoding the signal into a form usable for the consumer, such as sound, pictures, digital data, measurement values, navigational positions, etc.[10]

Radio band[edit]

Main article: Radio frequency

Light comparison
NameFrequency (Hz) (Wavelength)Photon energy (eV)
Gamma ray> 30 EHz (0.01 nm)124 keV - 300+ GeV
X-Ray

30 EHz - 30 PHz (0.01 nm - 10 nm)

124 eV to 120 keV
Ultraviolet

30 PHz - 750 THz (10 nm - 400 nm)

3.1 eV to 124 eV
Visible

750 THz - 428.5 THz (400 nm - 700 nm)

1.7 eV - 3.1 eV
Infrared

428.5 THz - 300 GHz (700 nm - 1 mm)

1.24 meV - 1.7 eV
Microwave

300 GHz - 300 MHz (1 mm - 1 m)

1.24 µeV - 1.24 meV
Radio

300 MHz - 3 kHz (1 m - 100 km)

12.4 feV - 1.24 meV

Radio frequencies occupy the range from a 3 kHz to 300 GHz, although commercially important uses of radio use only a small part of this spectrum.[11] Other types of electromagnetic radiation, with frequencies above the RF range, are infrared, visible light, ultraviolet, X-rays and gamma rays. Since the energy of an individual photon of radio frequency is too low to remove an electron from an atom, radio waves are classified as non-ionizing radiation.

Communication systems[edit]

A radio communication system sends signals by radio.[12] Types of radio communication systems deployed depend on technology, standards, regulations, radio spectrum allocation, user requirements, service positioning, and investment.[13]

The radio equipment involved in communication systems includes a transmitter and a receiver, each having an antenna and appropriate terminal equipment such as a microphone at the transmitter and a loudspeaker at the receiver in the case of a voice-communication system.[14] The power consumed in a transmitting station varies depending on the distance of communication and the transmission conditions. The power received at the receiving station is usually only a tiny fraction of the transmitter's output, since communication depends on receiving the information, not the energy, that was transmitted.

Classical radio communications systems use frequency-division multiplexing (FDM) as a strategy to split up and share the available radio-frequencybandwidth for use by different parties' communications concurrently. Modern radio communication systems include those that divide up a radio-frequency band by time-division multiplexing (TDM) and code-division multiplexing (CDM) as alternatives to the classical FDM strategy. These systems offer different tradeoffs in supporting multiple users, beyond the FDM strategy that was ideal for broadcast radio but less so for applications such as mobile telephony.

A radio communication system may send information only one way. For example, in broadcasting a single transmitter sends signals to many receivers. Two stations may take turns sending and receiving, using a single radio frequency; this is called "simplex." By using two radio frequencies, two stations may continuously and concurrently send and receive signals - this is called "duplex" operation.

History[edit]

Main article: History of radio

In 1864 James Clerk Maxwell showed mathematically that electromagnetic waves could propagate through free space.[15] The effects of electromagnetic waves (then-unexplained "action at a distance" sparking behavior) were actually observed before and after Maxwell's work by many inventors and experimenters including George Adams (1780-1784), Luigi Galvani (1791), Peter Samuel Munk (1835), Joseph Henry (1842), Samuel Alfred Varley (1852), Edwin Houston, Elihu Thomson, Thomas Edison (1875) and David Edward Hughes (1878).[16][17][18][19] Edison gave the effect the name "etheric force"[20] and Hughes detected a spark impulse up to 500 yards (460 m) with a portable receiver, but none could identify what caused the phenomenon and it was usually written off as electromagnetic induction.[21] In 1886 Heinrich Rudolf Hertz noticed the same sparking phenomenon and, in published experiments (1887-1888), was able to demonstrate the existence of electromagnetic waves in an experiment confirming Maxwell's theory of electromagnetism.

The discovery of these "Hertzian waves" (radio waves) prompted many experiments by physicists. An August 1894 lecture by the British physicist Oliver Lodge, where he transmitted and received "Hertzian waves" at distances up to 50 meters, was followed up the same year with experiments by Indian physicist Jagadish Chandra Bose in extremely high frequency radio microwaveoptics and a year later with the construction of a radio based lightning detector by Russian physicist Alexander Stepanovich Popov. Starting in late 1894, Guglielmo Marconi began pursuing the idea of building a wireless telegraphy system based on Hertzian waves (radio). Marconi gained a patent on the system in 1896 and developed it into a commercial communication system over the next few years.[22]

Early 20th century radio systems transmitted messages by continuous wave code only. Early attempts at developing a system of amplitude modulation for voice and music were demonstrated in 1900 and 1906, but had little success. World War I accelerated the development of radio for military communications, and in this era the first vacuum tubes were applied to radio transmitters and receivers. Electronic amplification was a key development in changing radio from an experimental practice by experts into a home appliance. After the war, commercial radio broadcasting began in the 1920s and became an important mass medium for entertainment and news. David Sarnoff, an early exponent of broadcast radio,[23] persuaded the Radio Corporation of America to begin an AM broadcasting service which rapidly grew in popularity. World War II again accelerated development of radio for the wartime purposes of aircraft and land communication, radio navigation and radar.[24] After the war, the experiments in television that had been interrupted were resumed, and it also became an important home entertainment broadcast medium. Stereo FM broadcasting of radio was taking place from the 1930s onwards in the United States and displaced AM as the dominant commercial standard by the 1960s, and by the 1970s in the United Kingdom.[25]

Uses of radio[edit]

For a broader coverage related to this topic, see Radio spectrum § Applications.

Early uses were maritime, for sending telegraphic messages using Morse code between ships and land. The earliest users included the Japanese Navy scouting the Russian fleet during the Battle of Tsushima in 1905. One of the most memorable uses of marine telegraphy was during the sinking of the RMS Titanic in 1912, including communications between operators on the sinking ship and nearby vessels, and communications to shore stations listing the survivors.

Radio was used to pass on orders and communications between armies and navies on both sides in World War I; Germany used radio communications for diplomatic messages once it discovered that its submarine cables had been tapped by the British. The United States passed on President Woodrow Wilson's Fourteen Points to Germany via radio during the war. Broadcasting began from San Jose, California in 1909,[26] and became feasible in the 1920s, with the widespread introduction of radio receivers, particularly in Europe and the United States. Besides broadcasting, point-to-point broadcasting, including telephone messages and relays of radio programs, became widespread in the 1920s and 1930s. Another use of radio in the pre-war years was the development of detection and locating of aircraft and ships by the use of radar (RAdio Detection And Ranging).

Today, radio takes many forms, including wireless networks and mobile communications of all types, as well as radio broadcasting. Before the advent of television, commercial radio broadcasts included not only news and music, but dramas, comedies, variety shows, and many other forms of entertainment (the era from the late 1920s to the mid-1950s is commonly called radio's "Golden Age"). Radio was unique among methods of dramatic presentation in that it used only sound. For more, see radio programming.

Audio[edit]

One-way[edit]

Main article: Radio broadcasting

AM radio uses amplitude modulation, in which the amplitude of the transmitted signal is made proportional to the sound amplitude captured (transduced) by the microphone, while the transmitted frequency remains unchanged. Transmissions are affected by static and interference because lightning and other sources of radio emissions on the same frequency add their amplitudes to the original transmitted amplitude.

In the early part of the 20th century, American AM radio stations broadcast with powers as high as 500 kW, and some could be heard worldwide; these stations' transmitters were commandeered for military use by the US Government during World War II. Currently, the maximum broadcast power for a civilian AM radio station in the United States and Canada is 50 kW, and the majority of stations that emit signals this powerful were grandfathered in (see List of 50 kW AM radio stations in the United States). In 1986 KTNN received the last granted 50,000-watt class A license. These 50 kW stations are generally called "clear channel" stations (not to be confused with Clear Channel Communications), because within North America each of these stations has exclusive use of its broadcast frequency throughout part or all of the broadcast day.

FM broadcast radio sends music and voice with less noise than AM radio. It is often mistakenly thought that FM is higher fidelity than AM, but that is not true. AM is capable of the same audio bandwidth that FM employs. AM receivers typically use narrower filters in the receiver to recover the signal with less noise. AM stereo receivers can reproduce the same audio bandwidth that FM does due to the wider filter used in an AM stereo receiver, but today, AM radios limit the audio bandpass to 3–5 kHz. In frequency modulation, amplitude variation at the microphone causes the transmitter frequency to fluctuate. Because the audio signal modulates the frequency and not the amplitude, an FM signal is not subject to static and interference in the same way as AM signals. Due to its need for a wider bandwidth, FM is transmitted in the Very High Frequency (VHF, 30 MHz to 300 MHz) radio spectrum.

VHF radio waves act more like light, traveling in straight lines; hence the reception range is generally limited to about 50–200 miles (80–322 km). During unusual upper atmospheric conditions, FM signals are occasionally reflected back towards the Earth by the ionosphere, resulting in long distance FM reception. FM receivers are subject to the capture effect, which causes the radio to only receive the strongest signal when multiple signals appear on the same frequency. FM receivers are relatively immune to lightning and spark interference.

High power is useful in penetrating buildings, diffracting around hills, and refracting in the dense atmosphere near the horizon for some distance beyond the horizon. Consequently, 100,000-watt FM stations can regularly be heard up to 100 miles (160 km) away, and farther, 150 miles (240 km), if there are no competing signals. A few old, "grandfathered" stations do not conform to these power rules. WBCT-FM (93.7) in Grand Rapids, Michigan, US, runs 320,000 watts ERP, and can increase to 500,000 watts ERP by the terms of its original license. Such a huge power level does not usually help to increase range as much as one might expect, because VHF frequencies travel in nearly straight lines over the horizon and off into space.[27]

FM subcarrier services are secondary signals transmitted in a "piggyback" fashion along with the main program. Special receivers are required to utilize these services. Analog channels may contain alternative programming, such as reading services for the blind, background music or stereo sound signals. In some extremely crowded metropolitan areas, the sub-channel program might be an alternate foreign-language radio program for various ethnic groups. Sub-carriers can also transmit digital data, such as station identification, the current song's name, web addresses, or stock quotes. In some countries, FM radios automatically re-tune themselves to the same channel in a different district by using sub-bands.

Two-way[edit]

Main article: Two-way radio

Aviation voice radios use Aircraft band VHF AM. AM is used so that multiple stations on the same channel can be received. (Use of FM would result in stronger stations blocking out reception of weaker stations due to FM's capture effect). Aircraft fly high enough that their transmitters can be received hundreds of miles away, even though they are using VHF.

Marine voice radios can use single sideband voice (SSB) in the shortwave High Frequency (HF—3 MHz to 30 MHz) radio spectrum for very long ranges or Marine VHF radio / narrowband FM in the VHF spectrum for much shorter ranges. Narrowband FM sacrifices fidelity to make more channels available within the radio spectrum, by using a smaller range of radio frequencies, usually with five kHz of deviation, versus the 75 kHz used by commercial FM broadcasts, and 25 kHz used for TV sound.

Government, police, fire and commercial voice services also use narrowband FM on special frequencies. Early police radios used AM receivers to receive one-way dispatches. Civil and military HF (high frequency) voice services use shortwave radio to contact ships at sea, aircraft and isolated settlements. Most use single sideband voice (SSB), which uses less bandwidth than AM.[28] On an AM radio SSB sounds like ducks quacking, or the adults in a Charlie Brown cartoon. Viewed as a graph of frequency versus power, an AM signal shows power where the frequencies of the voice add and subtract with the main radio frequency. SSB cuts the bandwidth in half by suppressing the carrier and one of the sidebands. This also makes the transmitter about three times more powerful, because it doesn't need to transmit the unused carrier and sideband.

TETRA, Terrestrial Trunked Radio is a digital cell phone system for military, police and ambulances. Commercial services such as XM, WorldSpace and Sirius offer encrypted digital satellite radio.

Telephony[edit]

Mobile phones transmit to a local cell site (transmitter/receiver) that ultimately connects to the public switched telephone network (PSTN) through an optic fiber or microwave radio and other network elements. When the mobile phone nears the edge of the cell site's radio coverage area, the central computer switches the phone to a new cell. Cell phones originally used FM, but now most use either GSM or CDMA digital modulation schemes.[29]Satellite phones use satellites rather than cell towers to communicate.

Video[edit]

Analog television sends the picture as AM and the sound as AM or FM, with the sound carrier a fixed frequency (4.5 MHz in the NTSC system) away from the video carrier. Analog television also uses a vestigial sideband on the video carrier to reduce the bandwidth required.

Digital television uses 8VSB modulation in North America (under the ATSC digital television standard), and COFDM modulation elsewhere in the world (using the DVB-T standard). A Reed–Solomon error correction code adds redundant correction codes and allows reliable reception during moderate data loss. Although many current and future codecs can be sent in the MPEG transport streamcontainer format, as of 2006 most systems use a standard-definition format almost identical to DVD: MPEG-2 video in Anamorphic widescreen and MPEG layer 2 (MP2) audio. High-definition television is possible simply by using a higher-resolution picture, but H.264/AVC is being considered as a replacement video codec in some regions for its improved compression. With the compression and improved modulation involved, a single "channel" can contain a high-definition program and several standard-definition programs.

Navigation[edit]

Main article: Radio navigation

All satellite navigation systems use satellites with precision clocks. The satellite transmits its position, and the time of the transmission. The receiver listens to four satellites, and can figure its position as being on a line that is tangent to a spherical shell around each satellite, determined by the time-of-flight of the radio signals from the satellite. A computer in the receiver does the math.

Radio direction-finding is the oldest form of radio navigation. Before 1960 navigators used movable loop antennas to locate commercial AM stations near cities. In some cases they used marine radiolocation beacons, which share a range of frequencies just above AM radio with amateur radio operators. LORAN systems also used time-of-flight radio signals, but from radio stations on the ground.

Very High Frequency Omnidirectional Range (VOR), systems (used by aircraft), have an antenna array that transmits two signals simultaneously. A directional signal rotates like a lighthouse at a fixed rate. When the directional signal is facing north, an omnidirectional signal pulses. By measuring the difference in phase of these two signals, an aircraft can determine its bearing or radial from the station, thus establishing a line of position. An aircraft can get readings from two VORs and locate its position at the intersection of the two radials, known as a "fix."

When the VOR station is collocated with DME (Distance Measuring Equipment), the aircraft can determine its bearing and range from the station, thus providing a fix from only one ground station. Such stations are called VOR/DMEs. The military operates a similar system of navaids, called TACANs, which are often built into VOR stations. Such stations are called VORTACs. Because TACANs include distance measuring equipment, VOR/DME and VORTAC stations are identical in navigation potential to civil aircraft.

Radar[edit]

Main article: Radar

Radar (Radio Detection And Ranging) detects objects at a distance by bouncing radio waves off them. The delay caused by the echo measures the distance. The direction of the beam determines the direction of the reflection. The polarization and frequency of the return can sense the type of surface. Navigational radars scan a wide area two to four times per minute. They use very short waves that reflect from earth and stone. They are common on commercial ships and long-distance commercial aircraft.

General purpose radars generally use navigational radar frequencies, but modulate and polarize the pulse so the receiver can determine the type of surface of the reflector. The best general-purpose radars distinguish the rain of heavy storms, as well as land and vehicles. Some can superimpose sonar data and map data from GPS position.

Search radars scan a wide area with pulses of short radio waves. They usually scan the area two to four times a minute. Sometimes search radars use the Doppler effect to separate moving vehicles from clutter. Targeting radars use the same principle as search radar but scan a much smaller area far more often, usually several times a second or more. Weather radars resemble search radars, but use radio waves with circular polarization and a wavelength to reflect from water droplets. Some weather radar use the Doppler effect to measure wind speeds.

Data (digital radio)[edit]

Most new radio systems are digital, including Digital TV, satellite radio, and Digital Audio Broadcasting. The oldest form of digital broadcast was spark gap telegraphy, used by pioneers such as Marconi. By pressing the key, the operator could send messages in Morse code by energizing a rotating commutating spark gap. The rotating commutator produced a tone in the receiver, where a simple spark gap would produce a hiss, indistinguishable from static. Spark-gap transmitters are now illegal, because their transmissions span several hundred megahertz. This is very wasteful of both radio frequencies and power.

The next advance was continuous wave telegraphy, or CW (Continuous Wave), in which a pure radio frequency, produced by a vacuum tubeelectronic oscillator was switched on and off by a key. A receiver with a local oscillator would "heterodyne" with the pure radio frequency, creating a whistle-like audio tone. CW uses less than 100 Hz of bandwidth. CW is still used, these days primarily by amateur radio operators (hams). Strictly, on-off keying of a carrier should be known as "Interrupted Continuous Wave" or ICW or on-off keying (OOK).

Radioteletype equipment usually operates on short-wave (HF) and is much loved by the military because they create written information without a skilled operator. They send a bit as one of two tones using frequency-shift keying. Groups of five or seven bits become a character printed by a teleprinter. From about 1925 to 1975, radioteletype was how most commercial messages were sent to less developed countries. These are still used by the military and weather services.

Aircraft use a 1200 Baud radioteletype service over VHF to send their ID, altitude and position, and get gate and connecting-flight data. Microwave dishes on satellites, telephone exchanges and TV stations usually use quadrature amplitude modulation (QAM). QAM sends data by changing both the phase and the amplitude of the radio signal. Engineers like QAM because it packs the most bits into a radio signal when given an exclusive (non-shared) fixed narrowband frequency range. Usually the bits are sent in "frames" that repeat. A special bit pattern is used to locate the beginning of a frame.

Communication systems that limit themselves to a fixed narrowband frequency range are vulnerable to jamming. A variety of jamming-resistant spread spectrum techniques were initially developed for military use, most famously for Global Positioning System satellite transmissions. Commercial use of spread spectrum began in the 1980s. Bluetooth, most cell phones, and the 802.11b version of Wi-Fi each use various forms of spread spectrum.

Systems that need reliability, or that share their frequency with other services, may use "coded orthogonal frequency-division multiplexing" or COFDM. COFDM breaks a digital signal into as many as several hundred slower subchannels. The digital signal is often sent as QAM on the subchannels. Modern COFDM systems use a small computer to make and decode the signal with digital signal processing, which is more flexible and far less expensive than older systems that implemented separate electronic channels.

COFDM resists fading and ghosting because the narrow-channel QAM signals can be sent slowly. An adaptive system, or one that sends error-correction codes can also resist interference, because most interference can affect only a few of the QAM channels. COFDM is used for Wi-Fi, some cell phones, Digital Radio Mondiale, Eureka 147, and many other local area network, digital TV and radio standards.

Heating[edit]

Main article: Radio-frequency heating

Radio-frequency energy generated for heating of objects is generally not intended to radiate outside of the generating equipment, to prevent interference with other radio signals. Microwave ovens use intense radio waves to heat food. Diathermy equipment is used in surgery for sealing of blood vessels.

Amateur radio service[edit]

Amateur radio, also known as "ham radio", is a hobby in which enthusiasts are licensed to communicate on a number of bands in the radio frequency spectrum non-commercially and for their own experiments. They may also provide emergency and service assistance in exceptional circumstances. This contribution has been very beneficial in saving lives in many instances.[30]

Radio amateurs use a variety of modes, including efficient ones like Morse code and experimental ones like Low-Frequency Experimental Radio. Several forms of radio were pioneered by radio amateurs and later became commercially important, including FM, single-sideband (SSB), AM, digital packet radio and satellite repeaters. Some amateur frequencies may be disrupted illegally by power-line internet service.

Unlicensed radio services[edit]

Unlicensed, government-authorized personal radio services such as Citizens' band radio in Australia, most of the Americas, and Europe, and Family Radio Service and Multi-Use Radio Service in North America exist to provide simple, usually short range communication for individuals and small groups, without the overhead of licensing. Similar services exist in other parts of the world. These radio services involve the use of handheld units.

Wi-Fi also operates in unlicensed radio bands and is very widely used to network computers.

Free radio stations, sometimes called pirate radio or "clandestine" stations, are unauthorized, unlicensed, illegal broadcasting stations. These are often low power transmitters operated on sporadic schedules by hobbyists, community activists, or political and cultural dissidents. Some pirate stations operating offshore in parts of Europe and the United Kingdom more closely resembled legal stations, maintaining regular schedules, using high power, and selling commercial advertising time.[31][32]

Radio control (RC)[edit]

Radio remote controls use radio waves to transmit control data to a remote object as in some early forms of guided missile, some early TV remotes and a range of model boats, cars and airplanes. Large industrial remote-controlled equipment such as cranes and switching locomotives now usually use digital radio techniques to ensure safety and reliability.

In Madison Square Garden, at the Electrical Exhibition of 1898, Nikola Tesla successfully demonstrated a radio-controlled boat.[33] He was awarded U.S. patent No. 613,809 for a "Method of and Apparatus for Controlling Mechanism of Moving Vessels or Vehicles."[34]

See also[edit]

Notes[edit]

References[edit]

  1. ^Dictionary of Electronics By Rudolf F. Graf (1974). Page 467.
  2. ^"Radio-Electronics, ''Radio Receiver Technology''". Radio-electronics.com. Retrieved 2014-08-02. 
  3. ^The Electromagnetic Spectrum, University of Tennessee, Dept. of Physics and Astronomy
  4. ^R. K. Puri (2004). Solid State Physics and Electronics. S. Chand. ISBN 81-219-1475-2. 
  5. ^"Production of Sound by Radiant Energy" by Alexander Graham Bell, Popular Science Monthly, July, 1881, pages 329-330: "[W]e have named the apparatus for the production and reproduction of sound in this way the "photophone", because an ordinary beam of light contains the rays which are operative. To avoid in future any misunderstandings upon this point, we have decided to adopt the term "radiophone", proposed by M. Mercadier, as a general term signifying the production of sound by any form of radiant energy..."
  6. ^"The Genesis of Wireless Telegraphy" by A. Frederick Collins, Electrical World and Engineer, May 10, 1902, page 811.
  7. ^"Wireless Telegraphy", The Practical Engineer, February 25, 1898, page 174. "Dr. O. J. Lodge, who preceded Marconi in making experiments in what may be called "ray" telegraphy or radiotelegraphy by a year or two, has devised a new method of sending and receiving the messages. The reader will understand that in the radiotelegraph electric waves forming the signals of the message start from the sending instrument and travel in all directions like rays of light from a lamp, only they are invisible."
  8. ^"Wireless Telegraphy", The Electrical Review (London), January 20, 1905, page 108, quoting from the British Post Office's December 30, 1904 Post Office Circular.
  9. ^"Interference with Wireless Messages", Electrical World, June 22, 1907, page 1270.
  10. ^"Radio-Electronics, ''Radio Receiver Technology''". Radio-electronics.com. Retrieved 2014-08-02. 
  11. ^The Electromagnetic Spectrum, University of Tennessee, Dept. of Physics and Astronomy
  12. ^Clint Smith, Curt Gervelis (2003). Wireless Network Performance Handbook. McGraw-Hill Professional. ISBN 0-07-140655-7. 
  13. ^Macario, R. C. V. (1996). Modern personal radio systems. IEE telecommunications series, 33. London: Institution of Electrical Engineers. Page 3.
  14. ^R. K. Puri (2004). Solid State Physics and Electronics. S. Chand. ISBN 81-219-1475-2. 
  15. ^web.pdx.edu/~bseipel/Lecture%20notes%206-%20203%20EMwaves.pdf
  16. ^"EM Wave Detectors". IETE Technical Review. 5: 329–331. doi:10.1080/02564602.1988.11438340. 
  17. ^T. K. Sarkar, Robert Mailloux, Arthur A. Oliner, M. Salazar-Palma, Dipak L. Sengupta , History of Wireless, John Wiley & Sons - 2006, pages 258-261
  18. ^Christopher H. Sterling, Encyclopedia of Radio 3-Volume, Routledge - 2004, page 831
  19. ^Anand Kumar Sethi, The Business of Electronics: A Concise History, Palgrave Macmillan - 2013, page 22
  20. ^ieeeghn.org, IEEE Global History Network, Etheric Force
  21. ^W. Bernard Carlson, Innovation as a Social Process: Elihu Thomson and the Rise of General Electric, Cambridge University Press - 2003, pages 57-58
  22. ^"U.S. Supreme Court". Retrieved 2012-04-23. 
Radio communication. Information such as sound is converted by a transducer such as a microphone to an electrical signal, which modulates a radio wave sent from a transmitter. A receiver intercepts the radio wave and extracts the information-bearing electronic signal, which is converted back using another transducer such as a speaker.
An audio signal (top) may be carried by an AM or FM radio wave.
Bakelite radio at the Bakelite Museum, Orchard Mill, Williton, Somerset, UK.
A Fisher 500 AM/FM hi-fi receiver from 1959.
Degen DE1103, an advanced world mini-receiver with single sideband modulation and dual conversion
2008 Pure One Classic digital radio



SEPTEMBER 26, 2015

The following is a feature article from the LARB Quarterly Journal: Summer 2015 edition. To pick up your copy of the Journal, become a member of the Los Angeles Review of Books or order a copy at amazon.com.

¤

1.

A FEW YEARS AGO the BBC’s flagship domestic station, BBC Radio 4 (imagine a better-funded NPR, with a more central place in national life), canceled its main children’s show Go4It. Audience research had revealed — perhaps belatedly — that the average age of the listenership was well over 50. Maybe it was chastening for the program makers, maybe they knew it all along. Seen in longer historical perspective, however, the disjuncture is not so unusual. Of all mass media, radio has always had the least developed relation to children. The history of film or photography, of TV or the internet, could hardly be written without reference to the child: images of children, children as audience and market, children’s actual or hysterically invoked vulnerability. But radio has always been an overwhelmingly adult phenomenon.

Of course, there has long been broadcast radio aimed at children. There were kids’ serials in the American network golden age, cozy British stuff like Listen with Mother in the 1960s, various kinds of educational radio. There are Sirius satellite channels, and Radio TEDDY, a German children’s broadcaster, still transmits on the airwaves. But all this — and even radio hardware marketed to children — is a small and relatively unimportant part of radio as a historical phenomenon. Moreover, radio’s relation to children is indirect, even uncanny: for children, radio is above all something addressed to grown-ups, but they can overhear it, or listen in on it. Radio, in this way, becomes a channel to a world beyond the home. Voices and sounds from the radio bring traces of a different life into the cloistered spaces of childhood and family.

 

2.

Any serious history of children and radio — any history going beyond a chronicle of program offerings — must include the German writer Walter Benjamin. Benjamin wrote extensively for the radio, and most of those broadcast writings — now newly translated and collected — were written for children, at least at first glance. More than that, something quintessentially Benjaminian happens in that uncanny encounter of radio and child: the hint of an unsettling remainder in the everyday, in the dislocation of sent message and received meaning, in the figure of the child who knows something his parents do not. 

Benjamin’s texts date from the late 1920s and early 1930s, when he was a regular broadcaster on Berlin and Frankfurt radio, mostly for youth and children’s programming. Benjamin’s self-reinvention as a broadcaster was the product of necessity. Excluded from the academy, he made a living with prolific freelancing. He was well connected in literary circles, which overlapped considerably with the burgeoning German broadcast industry. Above all, radio work came his way through an old school friend, Ernst Schoen, head of the culture department of Frankfurt radio, the most liberal and aesthetically adventurous of Germany’s nine regional stations.

As in much of Europe, early German radio was highly controlled and highly conservative. Although broadcast technology was a product of war’s accelerated modernization, the new medium’s ideology was rooted in paternalistic cultural politics. Planners of the first free-to-air stations foresaw a one-way transmission of high-to-middlebrow culture: edifying, mildly diverting programs meant to ease a quiescent population to sleep. The extraordinary energies of interwar popular culture — as seen in Weimar cinema or the illustrated press — were to be kept firmly outside, through a mixture of institutional culture and, if necessary, overt censorship. The restrictions extended to politics and current affairs: any mention of these, beyond the pieties of official nationalism, was tightly sequestered into a few short daily news bulletins, distributed by a central agency.

Paternalistic cultural statism — similar to the creed of John Reith, the BBC’s founding father — quickly came into tension with commercial interests. Radio in Germany, as elsewhere in Europe and beyond, took off very rapidly in the 1920s. In just a few years, the early cottage industry developed into a highly capitalized commercial sector. There was much at stake in the sale of hardware and the provision of content — profits, reputations, and careers to be made. Huge modern broadcasting centers were built in major German cities. Receivers got steadily cheaper, technological innovation continued, and listener numbers quickly grew, as did daily broadcast hours. Without ever fully breaking out of the confines of the original model, Weimar radio became a looser, larger, and more modern phenomenon. Music — light and even popular music — took on a more important role, especially in the daytime, for a female audience. With the coming of synchronized film sound, movie hits were regularly played on air in a conscious attempt to maximize synergies between cinema and radio, including the sale of phonograph records and sheet music. 

This was the labile world of late Weimar broadcasting in which Benjamin briefly found his niche. The bulk of his radio work comprised 20- to 30-minute talks written for an audience of young listeners. Along with travel pieces and a series on Berlin arcana, they include talks on a dizzying range of topics. Dipping into demotic history, Benjamin turns his attention to, among other things, swindlers and con men, robber bands and witch trials, gypsies and bootleggers, the Lisbon earthquake and the fall of the Bastille. The miscellany can be bizarre — a collection of anecdotes about dogs, for example, or a “brainteaser” broadcast with an incomprehensibly elaborate interactive quiz. There is also quite a bit of what, at first glance, reads like light feuilleton reportage, with Benjamin turning an acute journalistic eye — his instinct for detail serving him well — on factories, department stores, and street markets. These subjects rarely seem imposed from above. Instead, the broadcasts trace a whimsical wandering line in Benjamin’s own thought. He seems to write about whatever is on his mind or on his reading table at the time.

In addition to programs for children, Benjamin turned out a few radio plays (some for kids, some not) as well as “grown-up” lectures on a variety of topics. At times, an astute freelancer, he lightly reworked already published content. His first ever radio talk was a report on “Young Russian Poets,” using material from his time in Moscow; his last, just before the Nazi takeover, was a reading from his Berlin Childhood Around 1900. More significantly, he also wrote a number of didactic role-play vignettes on work and careers, so-called “listening models” heavily influenced by the epic theatre and the early media theory of Bertolt Brecht, with whom Benjamin enjoyed a close, if sometimes one-sided, friendship. In this mode, Benjamin sought to inject some political urgency, some sense of the present — some actuality, in the buzzword of the day — into the torpid banality of Weimar radio. The dialectical dialogue “A Pay Raise? Whatever Gave You That Idea!,” for example, dramatizes correct and incorrect ways of asking for a pay raise. 

In terms of his own finances, Benjamin did pretty well from all this work. Radio honoraria were probably his main income at the time. In fact, for a brief moment, Benjamin was a prototype of a later phenomenon, when public broadcasters effectively subsidized European literary production with generous broadcast fees. (Near the BBC’s old HQ in London, you can still find pubs with pictures of George Orwell and Dylan Thomas displayed above the bar, celebrating the radio checks cashed and spent there.) But the wider question of the value of Benjamin’s radio writings, and their place in his work, has never really been settled. For the most part, they have remained a vaguely known but ultimately obscure corner of his sprawling oeuvre. 

The neglect was partly due to editorial taxonomy. Right or wrong, medium was not an organizational principle for Benjamin’s early editors, so the broadcast writings were lumped in with other occasional and journalistic work. The absence of sound recordings also played a role. Early radio was overwhelmingly live, and went almost completely unrecorded. The problem was solved by around 1930 — 16-inch disk recorders became standard in-house technology. But the process was awkward and expensive, and only a fraction of programming survives. (Among other things, this means that there is no recording of Benjamin’s voice, a lack that surely contributes to the aura of ineffability that clings to his persona.) 

But the biggest stumbling block for later readers of the radio work is the vehemence with which Benjamin himself wrote it off. At the time, he privately dismissed his broadcast writing, with a few exceptions, as pure hackwork — Brotarbeit, “bread-work,” he calls it — which sapped his energies, distracting him from more important tasks. In one letter to his friend Gershom Scholem, he reports that he has hired a new dictation secretary, to save time with the radio stuff, and literally to keep his hands clean. Critics writing about the radio work have done some neat footwork to get around this authorial dis-imprimatur. A 1990s monograph ingeniously suggested that the oral composition, and the strong association with childhood, meant the pieces could be read psychoanalytically, as emanations from Benjamin’s unconscious. Others, correlating what he wrote about radio with his harsh judgment of his own radio writing, read him as a thwarted avant-gardist, forced to forego his experimental desires and modernist plans, reduced by circumstances to writing embarrassing lectures for children.

 

3.

Given this attitude, one might wonder at Verso’s publication of a nearly complete and newly translated volume of the radio writing. It is tempting to hear the rattle of the spoon scraping the last from the Benjaminian barrel. Being cynical about Benjamin is easy these days, after he has been overexposed by a joyless kind of academic hype, his reputation dulled by mechanical praise. But you only need to read him to be charmed and awed again. In fact, these little broadcast miniatures contain some of Benjamin’s most delightful moments. The scale of his erudition is almost comical: the scholar of Kant and the connoisseur of the Baroque deploys his profound knowledge of the history of stamp collecting. Shaped for a young audience, more than ever his learning is worn with lightness and grace. And as always, his ideas are inseparable from images. In his talk on puppetry, Benjamin recalls performances witnessed in half a dozen cities, tells tales of puppets blowing smoke rings or turning into live doves, recounts shows called “The Robber Baron Flayed Alive!” and “Murder in the Wine Cellar.” He quotes, fondly and verbatim, the patter of puppeteers, living and dead. But the images, no matter how full of wonder, are knitted together (kneaded together …) in resolutely materialist and historical analysis, as he invokes puppetry’s link to the sacred — through fetish and animism — and traces its history to the blasted aftermath of the Thirty Years’ War.

It is as if Benjamin can’t help himself. No matter what the audience, no matter how abstruse or mundane the subject, he cannot help — with a turn of phrase or a turn of thought — but reveal his dialectical finesse, his subtlety with images, his depth of imaginative recall, his aphoristic brilliance. Like a prince in disguise, he gives himself away. His little talk on Cagliostro — the 18th-century religious charlatan who conned his way around the courts of Europe — contains a subtle psychological reading of the man, and a critique, in passing, of narrow-minded Enlightenment. Deeply sympathetic to Cagliostro himself, Benjamin is scornful of the courtly dupes, so proud of their “Reason,” who could neither see through nor ever understand his con: 

people were so firmly convinced the supernatural world did not exist, they never took the trouble to reflect upon it seriously and thus fell victim to Cagliostro. […] This is another lesson from the story: in many cases, powers of observation and knowledge of human nature are even more valuable than a firm and correct point of view.

Benjamin turns and returns to the 19th century above all. As in Berlin Childhood Around 1900, images from his own childhood blend with a wider history. He alludes repeatedly to his teachers, his favorite books, his young adventures in the city. But the personal is not private. His childhood consciousness is invoked so its experience can resonate with other alert young minds, both in the 19th century and among his radio listeners. This complex communion is at its most crafted in talks devoted to toys. The “Berlin Toy Tour” essays are, on one level, a kind of feature journalism: Benjamin visits a department store, describing in detail the wonder of modern toys, and recalling those of his own youth. But the talks go strangely and beautifully astray, passing through a brief history of artisanal craftsmanship, then morphing into a reflection — a self-reflection — on the relation of passion, knowledge, and possession. He concludes in the simplest of voices:

[…] it’s left to me to calmly say what I really think: the more someone understands something, and the more he knows of a particularly kind of beauty — whether it’s flowers, books, clothing or toys — the more he can rejoice in everything that he knows and sees, and the less he’s fixated on possessing it, buying it himself, or receiving it as a gift. Those of you who listened to the end […] must now explain this to your parents. 

The image of children teaching their parents gives a hint of the radio essays’ wider purpose. All in all, read together — as the Verso volume allows — his children’s essays emerge as a coherent experimental project in its own right, but not in any strict sense a formal or technical experiment. Its modernism has little resemblance to the ideas of the early radio avant-garde, be it F. T. Marinetti’s Italian noise poetry — influential then, still reverently cited today — or the Russian Futurists’ invocation of a radio-planetary sublime. It is a world away from Brecht’s best-known radio work, the modernist cantata The Flight of the Lindberghs, with its dramaturgy of closed-circuit transmission.

Instead, Benjamin’s essays for children are an exercise in popular historical pedagogy, a serious attempt — at least to begin with — to give voice to a revitalized Enlightenment, colored with Benjamin’s own idiosyncratic historical materialism. Benjamin, in other words, takes an unashamedly pedagogical approach, but one quite unlike the state paternalism that funneled a diluted high culture to a mass audience, in hopes they would quiet down and learn their place. His project here is to use radio’s new public sphere to propagate an Enlightenment “from below,” drawing energy from the force of a pre- and extra-capitalist popular culture.

This makes Benjamin’s radio writing sound more abstract and highfalutin than it is. It was meant, after all, for children and adolescents. There is a startling lack of snobbery to the man, in content, tone, and technique. (How game he is. Imagine Adorno or Heidegger writing a quiz, or telling little stories about dogs.) His style is crafted with the radio medium in mind, not in some reified sense of “the acoustic” but as a device that enables him to address actual people, whom he presumes to be intelligent, already possessed of knowledge, and keen to gain more. Technique aligns with subject matter. Over weeks and months, never using his own name — but using “I” a lot — he builds a palpable radio persona, addressing his audience with informality and care. He even has a kind of catchphrase, beginning many of the talks with “Are you familiar with […]?” or “I imagine you must already be familiar with […].” At the end of broadcasts, he often offers gentle summaries, little teacherly pointers for further thought, or the suggestion — the hope, really — that the listener, in some future moment, may recall the talk and its writer. 

The quiet performative élan guides the listener on a digressive but not aimless passage through the history of European popular culture. These talks amount to a portrait — a composite, occasional, and partial portrait — of the people. Images of children in the city blend with Benjamin’s own longing — he was not alone in this at the time — for a literate, confident proletariat as a cultural and political force. Quoting Adolf Glassbrenner, chronicler of early 19th-century Berlin, he might be speaking of his own radio enterprise: “We are separated from the great mass of the people by everything, by eccentric habits and education, by money, by our speech, and by our clothes. Unless we join hands with the people and come to an understanding with them, no freedom is possible.” 

Benjamin’s pickings from his trove of arcana — whether on puppets or Pompeii — are not representative moral fables, but are chosen for the life that flows through them, for populist cheerfulness, resourcefulness, and wit, for a glint of humor or pathos, for shrewdness leavened with generosity, for a nonpossessive worldliness. They are the embodiment, in tales recounted and lives lived, of a popular countertradition of wisdom, courage, and stubborn autonomy. All of this, it is clear, Benjamin felt it important to impart to the young. Put another way, these radio talks perform an unassuming version of the dialectical move Benjamin so loved: invoking a past first made strange and then made available, which feeds the present’s imagination and fuels its courage.

 

4.

Why then Benjamin’s negative judgment on what was, at least in part, clearly a labor of love? Why did he dismiss these popular pedagogical pieces and deny the effort he put into them? Shame explains it, in part: Benjamin’s discomfort at his increasingly diminished social status led to a certain contempt — both banal and perverse — for commissioned work and residual professional affiliations. But it is also important to understand the ultimate trajectory of his radio career, which becomes clear in a collected volume. Reading the full series of radio talks, you get a sense of great energies gradually sapping away. The care and finesse of the early talks goes missing; the final broadcasts are hurried and slapdash, segues are awkward or broken, the choice of subjects increasingly arbitrary and unformed.

Clearly — and ironically, given his attention to high spirits and the transmission of resolve — Benjamin lost heart and lost interest. Maybe the work took an emotional toll he was no longer willing to pay. To bring pedagogical tenderness to bear is not easy at the best of times. Without recordings to play back, without a clear place — or a job — at the station, without any coherent channel for feedback, Benjamin must sometimes have felt as if he were speaking into a void. The short text “On the Minute” (strangely omitted in this book), an evocative account of panic and loneliness before the studio microphone, alludes to this sense of isolation.

But more direct political factors also played a role. A first jolt of authoritarianism centralized German radio in 1932, dragging it toward the nationalist right. Reactionaries scoured the stations, enforcing a stricter alignment with the state. And things got worse: Benjamin’s last broadcast came in early 1933, a day before Hitler was appointed Chancellor. After that, there was no more radio for him. Goebbels — a different kind of radio artist — took over.

¤

Brían Hanrahan teaches and writes on media and film history. He lives in California.


0 thoughts on “Radio Broadcasting Essay”

    -->

Leave a Comment

Your email address will not be published. Required fields are marked *